

Arduino Projects from theorycircuit.com

July 2016 – top 5

1. RTC DS-1307 with Arduino

Every real time applications need one RTC chip. In this tutorial you can get idea and
knowledge about RTC DS 1307 (Real Time Clock chip) and interfacing with Arduino

development board.

The DS 1307 RTC IC is 8pin dual inline package chip and it is very simple to use with low
cost and easy available. Normally this IC counts date and time perfectly, it continue counting
even if the power failure when the battery backup provided. 3V coin cell battery enough to
provide individual supply to DS 1307 IC.

DS 1307 RTC Pinout

theorycircuit.com

Block Diagram of DS1307

This RTC IC contains more than seven internal blocks, the first one is oscillator and divider it
is connected with standard 32.768 KHz quartz crystal, the internal oscillator circuitry is
designed for operation with a crystal having a specified capacitance of 12.5 pF. The power
control block have Vcc, Gnd and Vbat pins, here Vcc and Gnd pins provides primary power

supply.

When the voltage is applied within normal limits, the device is fully accessible and data can
be written and read. When the battery supply connected (Vbat) without primary supply read
and writes are inhibited, but the time keeping function continues.

The DS 1307 RTC communicates with external world through serial bus interface I²C

protocol. SCL (Serial Clock), SDA (Serial Data).

RTC module

Circuit Diagram of RTC module

This RTC module circuit has few external components like 32.768 KHz quartz crystal

element, filter capacitor 0.1uF and pullups resisters 4.7KΩ, this RTC provides I²C address

about 0x68. This little breakout that uses the DS1307 to keep track of the current year,

month, day as well as the current time. The module comes fully assembled and includes a

small CR1225 Lithium coin cell battery that will run the RTC for a minimum of 9 years (17

years typical) without an external 5V power supply.

Arduino and RTC DS1307 Hookup

Connect 5V and Gnd supply form arduino power pins and carefully connect SDA pin of RTC

with Arduino analog pin A4 and then SCL pin of RTC with arduino analog pin A5. Now the

setup is ready put the bellow arduino code on it.

Arduino CODE for RTC

#include "Wire.h"

#define DS1307_ADDRESS 0x68

byte zero = 0x00; //workaround for issue #527

void setup(){

 Wire.begin();

 Serial.begin(9600);

 setDateTime(); //MUST CONFIGURE IN FUNCTION

}

void loop(){

 printDate();

 delay(1000);

}

void setDateTime(){

 byte second = 45; //0-59

 byte minute = 40; //0-59

 byte hour = 0; //0-23

 byte weekDay = 2; //1-7

 byte monthDay = 1; //1-31

 byte month = 3; //1-12

 byte year = 11; //0-99

 Wire.beginTransmission(DS1307_ADDRESS);

 Wire.write(zero);

 Wire.write(decToBcd(second));

 Wire.write(decToBcd(minute));

 Wire.write(decToBcd(hour));

 Wire.write(decToBcd(weekDay));

 Wire.write(decToBcd(monthDay));

 Wire.write(decToBcd(month));

 Wire.write(decToBcd(year));

 Wire.write(zero); //start

 Wire.endTransmission();

}

byte decToBcd(byte val){

// Convert normal decimal numbers to binary coded decimal

 return ((val/10*16) + (val%10));

}

byte bcdToDec(byte val) {

// Convert binary coded decimal to normal decimal numbers

 return ((val/16*10) + (val%16));

}

void printDate(){

 // Reset the register pointer

 Wire.beginTransmission(DS1307_ADDRESS);

 Wire.write(zero);

 Wire.endTransmission();

 Wire.requestFrom(DS1307_ADDRESS, 7);

 int second = bcdToDec(Wire.read());

 int minute = bcdToDec(Wire.read());

 int hour = bcdToDec(Wire.read() & 0b111111); //24 hour time

 int weekDay = bcdToDec(Wire.read()); //0-6 -> sunday - Saturday

 int monthDay = bcdToDec(Wire.read());

 int month = bcdToDec(Wire.read());

 int year = bcdToDec(Wire.read());

 //print the date EG 3/1/11 23:59:59

 Serial.print(month);

 Serial.print("/");

 Serial.print(monthDay);

 Serial.print("/");

 Serial.print(year);

 Serial.print(" ");

 Serial.print(hour);

 Serial.print(":");

 Serial.print(minute);

 Serial.print(":");

 Serial.println(second);

}

This program is designed to display time in serial terminal of arduino IDE, you can edit this

to display time on LCD.

Source:: http://www.theorycircuit.com/rtc-ds-1307-arduino/

http://www.theorycircuit.com/arduino-ide-1-6-9-released/
http://www.theorycircuit.com/rtc-ds-1307-arduino/

2.SST Liquid Level Sensor with Arduino

By using SST liquid level sensor we can detect the level of liquid via TTL compatible push-
pull output. This sensor part is covered with robust material, it allows us to install in limited

area of sensing.

An optical liquid level sensor uses an infra-red LED and phototransistor accurately
positioned at the base of the sensor’s tip. When the tip is air, infra-red light reflects internally
round the tip to the phototransistor providing good optical coupling between the two. When
the sensor’s tip is immersed in liquid, the infra-red light escapes from the tip causing a
change in the amount of light at the photo-transistor which makes the output change state.

(Source:SST Application note)

Position of Sensor

http://www.theorycircuit.com/wp-content/uploads/2016/06/User-Guide_0.pdf

Arduino SST Liquid sensor Interface

Connect sensors Vcc and Gnd pins to the power pins of arduino and connect output pin of

sensor to arduino digital pin 7. Make sure the position of sensor to sense the level of liquid.

Pin out of SST Liquid sensor

RED Vs
GREEN OUTPUT

BLUE 0V

Arduino Code

// Liquid level detection using an SST sensor

//

// When a liquid touches the tip of the sensor,

// an LED at pin 13 turns on.

//

// Hardware:

// Sensor | Arduino

// -------------|---------

// Vs (RED) | 5V

// Out (GREEN) | pin 7

// GND (BLUE) | GND

// Pins

const int LIQUID_SENSOR_PIN = 7;

const int LED_PIN = 13;

void setup() {

 pinMode(LIQUID_SENSOR_PIN, INPUT);

 pinMode(LED_PIN, OUTPUT);

 digitalWrite(LED_PIN, LOW);

}

void loop() {

 // Read sensor. If liquid touches the tip, the sensor will

 // read 0V. Turn on LED if liquid is present.

 int isDry = digitalRead(LIQUID_SENSOR_PIN);

 if (isDry) {

 digitalWrite(LED_PIN, LOW);

 } else {

 digitalWrite(LED_PIN, HIGH);

 }

 delay(200);

}

Arduino Code for sst liquid sensor from

Source:: http://www.theorycircuit.com/sst-liquid-level-sensor-arduino/

3.How to Connect Load Cell to Arduino?

Electronic weighing machine uses load cell to measure the load or pressure produced by the
load, here most load cells are follows the method of strain gauge, Which converts the
pressure (force) into an electrical signal, these load cells have four strain gauges that are

hooked up in a Wheatstone bridge formation.

When we apply load the strain gauge resistance will change and hence the output voltage
from the load cell get changes by the way we can measure the load value.

Wheatstone bridge formation of Load Cell

Instrumentation Amplifier

The output voltage changes from the load cell may vary between millivolt range, so that we
need to magnify the changes occurs in output voltage, here we used instrumentation

amplifier INA 125.

http://www.theorycircuit.com/sst-liquid-level-sensor-arduino/

This is a low power, high accuracy instrumentation amplifier with a precision voltage
reference. It provides complete bridge excitation and precision differential input amplification
on a single integrated circuit.

Pinout diagram of INA125

The INA125 is a 16 pin DIP (Dual Inline Package) IC. It has two stages of amplifier with

reference amplifier.

Load Cell Interfacing Schematic

Connect load cell pins to the instrumentation amplifier as shown in the schematic diagram.

RED : Excitation +

WHITE : Signal +

GREEN : Signal –

BLACK : Excitation –

The Resistor 10Ω connected between pin 8 & 9 is responsible for Gain of INA 125
instrumentation amplifier, the output is taken combined from Vo and Sense (Pin 10 & 11)
and it is fed into Arduino analog pin A0. Here the need of power supply for load cell and
instrumentation amplifier solved by Arduino power pins. This circuit is designed for getting

reading at serial terminal if you need to add display refer LCD interface with Arduino.

Arduino Code for Load Cell

// Load cells are linear. So once you have established two data pairs, you

can interpolate the rest.

// Step 1: Upload this sketch to your arduino board

// You need two loads of well know weight. In this example A = 10 kg. B =

30 kg

// Put on load A

// read the analog value showing (this is analogvalA)

// put on load B

// read the analog value B

// Enter you own analog values here

float loadA = 10; // kg

int analogvalA = 200; // analog reading taken with load A on the load cell

float loadB = 30; // kg

int analogvalB = 600; // analog reading taken with load B on the load cell

http://www.theorycircuit.com/drive-lcd-display-with-arduino-2/

// Upload the sketch again, and confirm, that the kilo-reading from the

serial output now is correct, using your known loads

float analogValueAverage = 0;

// How often do we do readings?

long time = 0; //

int timeBetweenReadings = 200; // We want a reading every 200 ms;

void setup() {

 Serial.begin(9600);

}

void loop() {

 int analogValue = analogRead(0);

 // running average - We smooth the readings a little bit

 analogValueAverage = 0.99*analogValueAverage + 0.01*analogValue;

 // Is it time to print?

 if(millis() > time + timeBetweenReadings){

 float load = analogToLoad(analogValueAverage);

 Serial.print("analogValue: ");Serial.println(analogValueAverage);

 Serial.print(" load: ");Serial.println(load,5);

 time = millis();

 }

}

float analogToLoad(float analogval){

 // using a custom map-function, because the standard arduino map function

only uses int

 float load = mapfloat(analogval, analogvalA, analogvalB, loadA, loadB);

 return load;

}

float mapfloat(float x, float in_min, float in_max, float out_min, float

out_max)

{

 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;

}

Hookup Diagram

Source:: http://www.theorycircuit.com/how-to-connect-load-cell-to-arduino/

http://www.theorycircuit.com/how-to-connect-load-cell-to-arduino/

4.Interfacing Load Cell with Arduino using HX711

Electronic weighing machine uses load cell to measure the load or pressure produced by the
load, here most load cells are follows the method of strain gauge, Which converts the
pressure (force) into an electrical signal, these load cells have four strain gauges that are

hooked up in a Wheatstone bridge formation.

When we apply load the strain gauge resistance will change and hence the output voltage
from the load cell get changes by the way we can measure the load value.

Wheatstone bridge formation of Load Cell

HX711 (24 bit Analog to Digital Converter)

HX 711 is a precision 24-bit analog to digital converter (ADC) specially designed for Weigh

scales and industrial control applications to interface directly with a bridge sensor.

http://www.theorycircuit.com/wp-content/uploads/2016/06/hx711.jpg

Pinout of HX711

Arduino Hookup

Simply connect Load cell wires to the HX711 module based on their color, then connect DAT
(Data) pin to Arduino Analog pin A1 and connect CLK (Clock) pin to Arduin0 Analog pin A0,

Put Vcc and Gnd supply from Arduino power source pins.

Arduino Code

// Hx711.DAT - pin #A1

// Hx711.CLK - pin #A0

http://www.theorycircuit.com/wp-content/uploads/2016/06/hx711-pin.png
http://www.theorycircuit.com/wp-content/uploads/2016/06/hx711-pin.png
http://www.theorycircuit.com/wp-content/uploads/2016/06/arduino-hx711.png

#include "hx711.h"

Hx711 scale(A1, A0);

void setup() {

 Serial.begin(9600);

}

void loop() {

 Serial.print(scale.getGram(), 1);

 Serial.println(" g");

 delay(200);

}

This simple code brings output at serial port terminal of Arduino IDE.

Before compiling this code put HX711 Library into the Arduino IDE.

Source:: http://www.theorycircuit.com/interfacing-load-cell-arduino-using-hx711/

https://github.com/bogde/HX711
http://www.theorycircuit.com/interfacing-load-cell-arduino-using-hx711/

5.Add Sound Detector to Your Arduino Project

Knock? Knock! did you hear that sound, now you can add sound detection to your Arduino
project, here I have used sparkfun Electret microphone Breakout board which is constructed
with small microphone (100 Hz – 10KHz) and preamplifier. It detects and amplify the sounds
of door knocks, claps, voice or any other sounds loud enough to picked up by the
microphone.

Microphone Breakout

Here the Electret Mic capsule capturing sound wave between two conducting plates (one a

movable and the other fixed) and converting sound waves into electrical wave.

https://www.sparkfun.com/products/12758
http://www.theorycircuit.com/wp-content/uploads/2016/07/mic-breakout.jpg

Microphone Breakout Schematic

The Electrical signals are amplified and appears in ―AUD‖ pin of breakout board. It can be
picked up by the micro controller’s ADC.

The output at AUD pin orgin at half the supply voltage hence the ADC will ideally read 1/2

the full scale or in case 512 on a 10 bit ADC.

Arduino Mic Breakout Schematic

http://www.theorycircuit.com/wp-content/uploads/2016/07/mic-schematic.jpg
http://www.theorycircuit.com/wp-content/uploads/2016/07/sound-detector-schematics.png

Arduino Hookup

Connect Vcc pin and Ground pin of breakout board to Arduino power supply pins (+5 and
Gnd), and then connect AUD (sound output) pin of breakout board to Arduino’s Analog pin

A0.

Breakout — Arduino

Vcc –> +5V

Gnd –> Gnd

AUD –> A0

Here i have used the Arduino’s on board LED at digital pin 13, you can use any other pins as
per your need.

Arduino Code for Sound Detection

Simple Code

int led = 13;

int threshold = 600; //Change This

int volume;

void setup() {

 Serial.begin(9600); // Serial port begin

 pinMode(led, OUTPUT);

http://www.theorycircuit.com/wp-content/uploads/2016/07/arduino-hookup-sound-detector.png

}

void loop() {

 volume = analogRead(A0); // Reads the value from the Analog PIN A0

 //Serial print level

 Serial.println(volume);

 delay(100);

 if(volume>=threshold){

 digitalWrite(led, HIGH); //Turn ON Led

 }

 else{

 digitalWrite(led, LOW); // Turn OFF Led

 }

}

Try clapping, Snapping, Door slamming. blowing, knocking etc.., and find the changes of
level in serial monitor and Adjust the if statement according to the level printed in serial
monitor.

You Can try this Arduino code also

/*

* This code has been adapted from the

* Example Sound Level Sketch for the

* Adafruit Microphone Amplifier

*/

const int sampleWindow = 250; // Sample window width in mS (250 mS = 4Hz)

unsigned int knock;

int ledPin = 13;

void setup()

{

 Serial.begin(9600);

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 unsigned long start= millis(); // Start of sample window

 unsigned int peakToPeak = 0; // peak-to-peak level

 unsigned int signalMax = 0;

 unsigned int signalMin = 1024;

 // collect data for 250 miliseconds

 while (millis() - start < sampleWindow)

 {

 knock = analogRead(0);

 if (knock < 1024) //This is the max of the 10-bit ADC so this loop

will include all readings

 {

 if (knock > signalMax)

 {

 signalMax = knock; // save just the max levels

 }

 else if (knock < signalMin)

 {

 signalMin = knock; // save just the min levels

 }

 }

 }

 peakToPeak = signalMax - signalMin; // max - min = peak-peak amplitude

 double volts = (peakToPeak * 3.3) / 1024; // convert to volts

Serial.println(volts);

 if (volts >=1.0)

 {

 //turn on LED

 digitalWrite(ledPin, HIGH);

 delay(500);

 Serial.println("Knock Knock");

 }

 else

 {

 //turn LED off

 digitalWrite(ledPin, LOW);

 }

}

Source:: http://www.theorycircuit.com/add-sound-detector-arduino-project/

http://www.theorycircuit.com/add-sound-detector-arduino-project/

